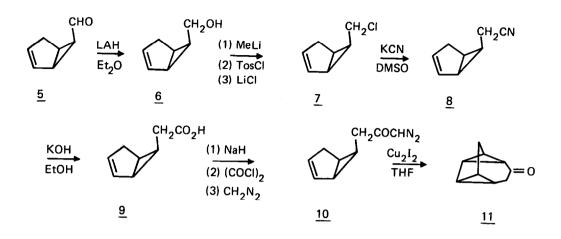
Tetrahedron Letters No. 38, pp 3329 - 3332, 1977. Pergamon Press. Printed in Great Britain.

SIMPLE DERIVATIVES OF TETRACYCLO[4.3.0.0^{2,9}0^{5,7}]NON-3-ENE: GENERATION AND TRANSFORMATIONS

R. D. Miller and D. L. Dolce IBM Research Laboratory San Jose, California 95193


(Received in USA 26 June 1977; received in UK for publication 5 August 1977) The mechanism of the thermal transformation of bicyclo[4.2.1] nona-2,4,7-triene <u>1</u> into cis-9,10-dihydroindene has received considerable mechanistic attention.¹ While there is some uncertainty concerning the detailed reaction mechanism, there seems to be general agreement that the dihydroindene is ultimately formed from the tetracyclic olefin <u>2</u> produced in low equilibrium concentration via intramolecular Diels-Alder cycloaddition. The suggested instability of <u>2</u> seemed reasonable based on the considerable structural strain coupled with the fact that the carbon skeleton of the cycloadduct is that of a bridged derivative of cis-bis-homobenzene, a material of known thermal lability.²

We^{3a} and others^{3b} have recently described the preparation of the first derivatives, $\underline{3}$ and $\underline{4}$, containing the basic tetracyclo[4.3.0.0^{2,9}0^{5,7}] nonene carbon skeleton. The considerable thermal stability imparted by the aromatic substitution in $\underline{3}$ and $\underline{4}$ however makes them poor models for predicting the relative stability of the hydrocarbon $\underline{2}$ itself. For this reason, we initiated efforts to prepare simple derivatives of $\underline{2}$ containing the same basic carbon skeleton but without stabilizing aromatic substituents.

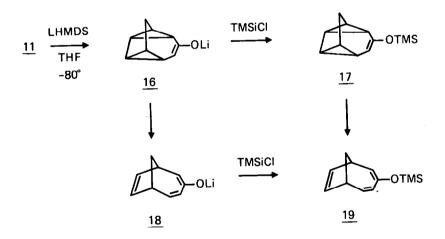
A successful synthetic route to functionalized tetracyclo[4.3.0.0^{2,9}0^{5,7}]nonane derivatives is shown below. The ketone <u>11</u> generated in an overall yield of 30% from the readily available aldehyde⁴ is the key intermediate and the first reactively functionalized derivative containing the desired carbon skeleton. The structure of <u>11</u> rests firmly on spectral and analytical data:⁵ ir(neat) C=0, 1675cm⁻¹; ¹H_{nmr}(CCl₄) τ 7.4-8.1(m,5H), 8.1-8.6(m,4H) and 8.82(m,1H). Further structural conformation was obtained by catalytic hydrogenation of <u>11</u> (PtO₂,EtOH) to the known⁶ bicyclo[4.2.1]nonan-3-one <u>12</u>.

The ketone itself was relatively unstable and rearranged upon heating (110°, 4hr) to produce the α , β -unsaturated derivative <u>13a</u> in quantitative yield: ir(neat) 1645cm¹; ${}^{1}H_{nmr}(\emptyset D_{6})$ τ 3.92(d,d,J=11,8Hz,1H), 4.39(d,J=11Hz,1H), 4.6(m,2H), 7.38-7.88(m,4H), 8.10-8.43(m,1H) and 8.58(d,J=10Hz,1H); UV(EtOH) 321nm(ε =60) and 230nm(ε =6660).

All attempts to directly convert the ketone $\underline{11}$ into $\underline{2}$ failed due to its lability under various reaction conditions. In an effort to introduce appropriate functionality for elimination to $\underline{2}$ under mild conditions, the ketone was reduced with LAH to generate the corresponding exo alcohol $\underline{14a}$. This material was subsequently characterized by conversion to the more stable acetate $\underline{14b}$ or methyl ether $\underline{14c}$.⁷ The alcohol $\underline{14a}$ was quite sensitive to acid conditions and rearranged quantitatively to $\underline{15a}$ even upon standing over magnesium sulfate. The sensitivity of the basic carbon skeleton of $\underline{14a}$ to ring opening prevented reactive functionalization and attempts resulted in rearrangement to derivatives of $\underline{15}$. A representative example is the formation of $\underline{15b}$ in quantitative yield upon treatment of $\underline{14a}$ with thionyl chloride-pyridine. Similar rearrangements were encountered in attempts to prepare the corresponding tosylate or mesylate even under very mild reaction conditions. The lability of derivatives of $\underline{14a}$ apparently results from strain relief upon ionization coupled with anchimeric assistance provided by the favorable disposed cyclopropane bond.⁸

<u>12</u>

<u>13a</u> <u>b</u> - 7,8-Dihydro



 $\frac{14a}{b} = OH$ $\frac{b}{c} = OAc$

<u>15a</u> R = OH b = CI

In hopes circumventing unwanted skeletal rearrangements, the direct enolization of 11 was investigated as a route to oxygenated derivatives of 2. Initial experiments utilizing LDA (-40°) in an attempt to produce the corresponding enolate of 11 resulted in the isolation of the rearranged ketone 13a. The use of ND₄C1-D₂O as the quenching reagent produced 13a which was $83\%d_1$. In an effort to determine whether <u>16</u> is actually produced upon enolization of <u>11</u> at low temperatures, a solution of 11 in THF-dg was reacted for 1 hr (-80°) with excess lithium hexamethyldisilamide (LHMDS) in the same solvent. The resulting homogeneous pale yellow solution was quenched at -80° with trimethylsilyl chloride and filtered rapidly (-80°) into an nmr tube. The resulting colorless solution showed a single proton resonance in the olefin region at τ 5.07 as a doublet (J=6Hz) due to coupling with an upfield cyclopropane hydrogen, as well as the high field absorptions characteristic of the tetracyclonane skeleton. This material was extremely unstable and rapidly rearranged $(t_{1/2}^{-52^{\circ}} < 8 \text{ min})$ to produce 3-tri-methylsiloxybicyclo[4.2.1.]nona-2,4,7-triene 19 as the only detectable product: ${}^{1}\text{H}_{nmr}(\text{CCl}_{4})^{T}$ 3.9(d,d,J=11,7Hz,1H), 4.29(d,d,J=11,2Hz,1H), 4.55(d,J=7Hz,1H), 4.73(brs,2H), 6.95(m,2H), 7.95(m,1H), 8.47(d,J=11Hz,1H), and 9.78(s,9H); mass spectroscopic molecular weight 206. The same product $\underline{19}$ was produced by the direct enolization of $\underline{13a}$ and subsequent quenching with trimethylsilyl chloride. On the basis of this data it seems likely that the unstable intermediate formed upon quenching the enclate of $\frac{11}{11}$ with trimethylsilyl chloride is 17.

To eliminate the unlikely possibility that it is the unusual charge polarization of vinyl ethers (i.e., increased electron density β to the ether oxygen) which destabilizes <u>17</u> and not the basic carbon skeleton itself, the lithium enolate <u>16</u> was prepared at -80° and observed by nmr. The nmr spectrum of <u>16</u> prepared directly from the ketone <u>11</u> showed a single vinyl resonance at T 5.34 which appeared as a broadened doublet (J=7Hz). The upfield shift of this proton relative to the comparable resonance in <u>17</u> is consistent with the predicted increased

3331

charge density at the β carbon atom. Quenching of <u>16</u> (-80°) with trimethylsilyl chloride produced <u>17</u> which rapidly rearranged to <u>19</u> upon warming. When the solution of <u>16</u> was allowed to stand at -52° it rearranged to the thermodynamically¹⁰ more stable enolate <u>18</u> which ultimately produced <u>19</u> upon treatment with trimethylsilyl chloride. Consistently the same anion <u>18</u> could be generated directly from the unsaturated ketone <u>13</u>. The half-life for the rearrangement of <u>16</u> to <u>18</u> was 23 minutes (-52°) indicating that increased anionic character at the β ring carbon of the tetracyclononane skeleton actually seems to stabilize it toward rearrangement. It therefore seems likely that <u>16</u> and <u>17</u> are reasonable models for <u>2</u> and that the hydrocarbon itself will be similarly unstable.

REFERENCES

- (a) J. A. Berson, R. R. Boettcher and J. J. Vollmer, J. Am. Chem. Soc. <u>96</u>, 1540 (1971);
 (b) R. C. DeSelms, J. Am. Chem. Soc. <u>96</u>, 967 (1974);
 (c) For rearrangement of a related system see T. S. Cantrell and H. Schechter, J. Am. Chem. Soc. <u>89</u>, 5868 (1967).
- (a) K. Menke and H. Hopf, Angew. Chem. Int. Ed. <u>15</u>, 165 (1976); (b) G. Kaupp and K. Rosch, Angew, Chem. Int. Ed. <u>15</u>, (1976).
- (a) R. D. Miller and D. L. Dolce, Tet. Lett., 1059 (1976); (b) H. D. Martin, S. Kagabu and H. J. Schiwek, Tet. Lett., 3311 (1975).
- 4. J. Meinwald, S. S. Labana and M. S. Chadha, J. Am. Chem. Soc. 85, 582 (1963).
- 5. Spectral data in accord with all structures were obtained. Complete data on any of the compounds described will be provided upon request.
- C. W. Jefford, V. Burger and F. Delay, Helv. Chim. Acta. <u>56</u>, 1083 (1973). We thank Professor Jefford for providing copies of pertinent spectral data for comparison.
- 7. Preliminary thermal stability studies on <u>14b,c</u> indicate that the lability previously observed for <u>11</u> is not a result of a strain relieving concerted 1,5-sigmatropic rearrangement of the bis-homocyclohexadiene moiety unless the carbonyl in <u>11</u> is exerting a strong substituent effect. For example, neat <u>14c</u> is stable for prolonged periods at 180° (17 hr) and under forcing conditions (350°, gas phase) produces only the triene .
- 8. In this respect, the p-nitrobenzoate of $\frac{14a}{14a}$ solvolyzed with a rate $(k^{75})^{=3x10}^{-4} sec^{-1}$, 80% acetone-water) considerably faster than expected for a geometrically rigid monocyclopropyl carbinyl derivative.⁹ The only product from this reaction was the exo alcohol 15a.
- 9. "Carbonium Ions," Vol. III, C. A. Olah and R. von R. Schleyer, Wiley-Interscience, New York, N.Y., 1972, p. 1295ff.
- 10. In addition to the obvious strain relief attending the ring openings, the possibility of anion stabilization via bis-homoconjugated interaction of the I systems should be considered. Preliminary nmr comparisons of <u>18</u> with the corresponding anion derived from the dihydro model compound <u>13b</u> where no homoconjugative interaction is possible indicates no significant interaction between the I systems in <u>18</u>.